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What is experimental evolution?
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What is experimental evolution?

* Artificial selection:
The experimenter selects parents with particular traits.

e (Quasi-natural) experimental evolution:

Organisms are placed in different environments and their
evolution is followed across generations.



Trait Distribution

Artificial selection
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S = Difference between the mean trait value of the
selected parents and that of the whole population.

R = Difference between the mean trait value of the
offspring and that of the whole parent population.

R =S x h?

The breeders’ equation
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Artificial selection: A classical example
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Artificial selection: Another example

Selection for eyespot size in butterflies

B. anynana Patricia Beldade
Changes in both eyespots simultaneously
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Experimental evolution

Time



Experimental evolution: A classical example
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Selection lines (evolving with parasitoid)
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Encapsulating ability of Drosophila exposed to a parasitoid increases across generations in lines
evolving in presence of the parasitoid, as compared to control lines.

Kraaijeveld & Godfray Nature 1997
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Drosophila evolving with bacterial infection have higher survival wnen exposed to those bacteria
than control lines.

Martins et al. 2013 PloS Pathogens



Why is experimental evolution useful for
evolutionary biologists?

* Knowledge of the initial, ancestral state. ALLOWS MEASURING THE RATE OF ADAPTATION.

* Precise control of the selection pressures that populations are exposed to. ALLOWS
INFERRING CAUSALITY.

* Having replicates at the population level. ALLOWS FOLLOWING THE HISTORY OF
POPULATIONS.

Importantly, we can:
(by placing individuals from all selection re imes in
the same environment during few generations), thereby singling out adaptation.

- Measure the of such adaptation for the performance in other
environments, i.e., the

* In this way, we can follow the adaptation process, instead of inferring it from the
pattern observed.



Experimental evolution studies in biocontrol
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Brief conclusions over this brief literature search

* | found few studies (< 30). Maybe a more thorough search would yield
better results, but it is clearly not a flourishing research area...

* Actually, most studies are rather old...

* Most studies do not meet the quality criteria of the field.



How was experimental evolution in biocontrol done?

* Knowledge of the initial, ancestral state. OFTEN, NOT ALWAYS

. PreciseScontroI of the selection pressures that populations are exposed to. OFTEN, NOT
ALWAY

* Having replicates at the population level. VERY RARELY!!!

. Importantly, we can:
(by placing individuals from all selection re imes in

the same environment during few generations), thereby singling out adaptation.

VERY RARELY!!!

- Measure the of such adaptation for the performance in other
environments, i.e., the . VERY RARELY!!!

* In this way, we canNOT follow the adaptation process, instead of inferring it from the
pattern observed. BUT... DO BIOCONTROL STUDIES NEED THIS?



How can experimental evolution be useful for
biocontrol?
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How can experimental evolution be useful for
biocontrol?

51 N kY
’ \cabbage suppression of .

internode length I Kale - enlargement
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of flower development
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Cauliflower - sterility n 4 Kohirabi - enhancement
of flowers Wild mustard of lateral meristems



How can we guarantee that experimental
evolution will produce super-bugs?

* For a trait to evolve by natural selection, there has to be genetic
variation for that trait in the population.



R=S x h?

R depends on S and h?, but the latter also depends

on the variability present in the population:

h?=Va/Vp
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Which traits are targeted by exp evol
biocontrol studies?

* Experimental evolution is used in biological control to improve useful
traits of natural enemies:

- Predation rate

- Fecundity

- Resistance to pesticides

- Tolerance to temperature extremes

* In general, studies aim to improve fitness-related traits of biological
control agents.



The Fundamental Theorem of Natural Selection

Ronald Fisher
Rw=vAw

The rate of increase in fitness of any organism at any time is equal to its
additive genetic variance in fitness at that time.

So, genetic variability is the motor that drives fitness increases in populations.



The Fundamental Theorem of Natural Selection

Ronald Fisher
Rw=vAw

The rate of increase in fitness of any organism at any time is equal to its
additive genetic variance in fitness at that time.

So, genetic variability is the motor that drives fitness increases in populations.
Problem: as fitness increases, it eliminates genetic variability...



How natural selection operates

Selection pressure (e.g., pesticide)
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Natural selection eliminates the variants with the lowest fitness.
This means that only some variants (the fitter) remain, hence genetic variance
decreases as fitness increases, particularly for fitness-related traits!



Heritability of fitness-related traits

Heritabilty of fitness-related traits is generally lower than that of other traits.

Trait Heritability (%)
Back fat thickness 30-70 (high)
Growth rate 20-50 (medium)
Feed conversion ratio 20-50 (medium)
Litter size at birth 0-20 (low)

Litter size at weaning 0-20 (low)



Heritability and evolutionary responses in spider mites

Isabelle Olivieri



Heritability and evolutionary responses in spider mites

BASE POPULATION:

Mite strain on cucumber for = 400
generations.

EXPERIMENTAL EVOLUTION

vﬁZS generations
f 2

.B 5 lines per selection regime
N




s there additive genetic variance for traits potentially
underlying adaptation to novel hosts?

2 3 2
/AN /N /N

Half-sib design



Genetic variance (Va)

Development time 0 0
Juvenile survival I /
Fecundity I I
Longevity I I
Host choice 0

Magalhties et al. J. Evol. Biol. 2007



Do these traits evolve when populations are
placed in those novel environments?

Adaptation :

Fitness in A
Gl

>

Time

F = founder ® = Populations selected in habitat A

Fitness in A




Are evolutionary responses limited
by genetic variation?
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Are evolutionary responses limited |
by genetic variation?
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Are evolutionary responses limited
by genetic variation?
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Are evolutionary responses limited
by genetic variation?

Ecology, 86(6). 2005, pp. 1371—1384
© 2005 by the Ecological Society of America

A REASSESSMENT OF GENETIC LIMITS TO EVOLUTIONARY CHANGE

MarE W. BLows!? AND ARY A. HOFFMANN?

1School of Integrative Biology, University of Queensland, Brisbane 4072, Australia
2Centre for Environmental Stress and Adaptation Research, La Trobe University, Melbourne 3083, Australia

IT’S NOT CLEAR

But beware you choose a population with high effective size to begin with



How can we guarantee that experimental
evolution will produce super-bugs?

* For a trait to evolve by natural selection, there has to be genetic
variation for that trait in the population.

* For a trait to evolve, it has to respond to a given selection pressure.



Selection pressures

* Under artificial selection, the experimenter sets him/herself the
selection pressure on a given trait. So he knows which trait will respond.

La ry — +00

The higher S, i.e., the further is the average of the
selected parents from the average of the population, the
fewer the number of parents to be selected will be
available.



Selection pressures

* Under artificial selection, the experimenter sets him/herself the
selection pressure on a given trait. So he knows which trait will respond.

e Under (quasi-natural) experimental evolution, we don’t know which trait
will respond, if any.



Back to the mites...

Development time 0 0
Juvenile survival I /
Fecundity I I
Longevity / /
Host choice 0

Magalhties et al. J. Evol. Biol. 2007
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How can we guarantee that experimental
evolution will produce super-bugs?

* For a trait to evolve by natural selection, there has to be genetic
variation for that trait in the population.

* For a trait to evolve, it has to respond to a selection pressure.

* For an evolutionary change to be beneficial for biological control, no
other relevant trait should trade off with the target trait.



A classical example

Selection lines (evolving with parasitoid)
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Are trade-offs universal?

Oral Infection
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Drosophila evolving with bacterial infection have higher survival when exposed to those bacteria
than control lines.

Martins et al. 2013 PloS Pathogens
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Costs in more extreme environments?

Mean Time to Death
(Days)

A — Starvation Resistance
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Costs in more extreme environments?

B — Development Time

A — Survival
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Trade-off between resistance to different
infection modes?

A Selection Regime: BactOral
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Are there trade-offs during adaptation to
novel environments?

BASE POPULATION:

Mite strain on cucumber for = 400
generations.

Isabelle Olivieri

EXPERIMENTAL EVOLUTION

vﬁZS generations
f 2

.B 5 lines per selection regime
\,




Performance on the ancestral host
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Magalhdes et al. BMC Evol. Biol. 2009



Performance on the other novel host
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Local adaptation
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Performance on the other novel host
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Don’t confuse pattern and process!

F = founder - .
\
O =lineson A //’O

@ =linesonB

Fithess on B
Fithess on B

F
Synclinal selection Anticlinal selection
No trade-off A trade-off

Bell and Reboud, Heredity 1997



How can we guarantee that experimental
evolution will produce super-bugs?

* For a trait to evolve by natural selection, there has to be genetic variation
for that trait in the population.

THIS IS OFTEN THE CASE, but may depend on the population and trait.

* For a trait to evolve, it has to respond to a selection pressure.

THIS IS OFTEN THE CASE, but we should be explicit about which traits are
under selection.

* For an evqutionarY change to be beneficial for biological control, no other
relevant trait should trade off with the target trait.

THIS MAY OFTEN BE THE CASE...



How can genomics contribute to improving
natural enemies?

* If genetic changes underlying trait evolution have a simple genetic
basis, then (in the near future) it may be possible to genetically
manipulate biocontrol agents (e.g., CRISPR-CAS9) and introduce the
alleles of choice in any population.

* |dentifying the basis of trade-offs, or any correlated response to
selection, may allow manipulating the environment in which biocontrol
agents are placed in order to maximize their efficiency.



Adaptation to viral infection

1.00 -

VirSys
0.75-

0.50 =

Survival
at day 10

0.25 =

W
ontrol

0.00 =
| ] | 1 | | | | | | I 1
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 M
Generation

Martins et al. PNAS 2014



Does adaptation entail a cost in other environments?

Virus Bacteria
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Flies evolving with DCV were more resistant to other viruses than control lines.

This adaptation did not affect performance when flies were exposed to bacteria.
Martins et al. PNAS 2014



What is the genetic basis of adaptation to viruses?

a) Experimental Evolution
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Genes in the 3L-selected region

The region peaks at Pastrel (pst), a gene that has been
implied in DCV resistance using Drosophila inbred lines

Resistant pastrel allele Susceptible pastrel allele
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Magwire et al. Plos Genet 2012



Candidate genes

12 non-synonymous coding SNPs in 9 genes

!

DEFICIENCIES| CANDIDATES ﬁ Int |syn|n sy| up dwn|utr | |Prot|>1al Adul‘M&F
1|2 Or&5h 3 2] 1 olfactory receptor activity/ sensory perception of smell
1 ndl 2 2 serine-type peptidase activity
45 CG9953 2 1] 1 | | high [serine-type carboxypeptidase activity
7 mus312 5[ 1 1 1l 3 protein binding/meiotic chromosome segregation
8|9 pst 2 2 olfactory learning; learning or memory; protein secretion
9 Cyp316al 2 1] 1 electron carrier activity/ oxidation-reduction process
10[ 8 [11 Ank2 10/ 6] 1] 1 2 | |cytoskeletal protein binding/ sensory perception of sound
10| 8 (11 CG7457 1 1 NK (Protein features are: Ankyrin repeat)
10|14 |11 CG8492 4 2| 2 high/mod | lysozyme activity/ antimicrobial humoral response

What is the effect of these genes on resistance to DCV?



The wonders of Drosophila genetics: RNAI lines

* RNA interference (RNAI) is a process by whichan | =~ "2 §
RNA links to an mRNA and blocks gene expression. §\} /

* The Drosophila community has created isogenic \ /
lines that express RNAI against particular genes. Y

* We have ordered RNAI lines against the candidate :}jﬁ
genes that we have identified in the 3L region.

* We then exposed these lines to DCV.

* If the gene targeted by the RNAi would have an & *
effect on DCV resistance, then their survival when 5 :
exposed to DCV would be reduced relative to T ™
control lines. 815
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tance properties

IS

Genes with different cross-res

A

2R 3L

X

2R 3L

Background

DCV CPV FHV

Martins et al. PNAS 2014

— ¢6V¥890

—t— ——
i - /S¥/9D
Hm = 5 - Dy
% 8669190
H - 1bj
- ~ 1B9LedAD
“ u “ ~ €0
- Zleld
= = e
- e - ¥7101L9D
— H- =~ -ageio
- 69¥01L90
— - €1€690
| I | I |
o - ~ () - ~ o -
(oney piezey)u|
DCV CPV FHV

He¢3-2an

“ 1 - —lmvmmwo

18d

(oney piezen)u|

T 1 1 1 I
© 5 Q- ©° 5 g~ o

|
[a]
1



Conclusions

* The field is incipient: few studies have used experimental evolution on
biocontrol agents, and most studies are poorly replicated and do not use
common environments to test for evolutionary changes.

* Adapting to one environment / trait changes may occur at a rapid pace ->
hope for improvement of current biocontrol agents.

* Adaption often entails no trade-offs.

* Knowledge of the genetic basis of adaptation of both predators to prey
and prey to predators may help us design future control strategies.
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