

Breeding Invertebrates for Next Generation Biocontrol

Bart Pannebakker – Coordinator
Laboratory of Genetics – Wageningen University
bart.pannebakker@wur.nl

Food security

Food security under threat by current & invasive pests

Invertebrate pests destroy 20% of world food

production (€73 billion)

- Protection challenging
 - EU pesticide regulations

Biological control

Biological control: safe solution

Often relies on imported natural enemies

- Regulations restrict import of exotic biocontrol agents
 - Biosafety concerns
 - Nagoya protocol
 - Access & Benefits Sharing

Optimization

- Optimize existing and native biocontrol agents
 - Reduce dependence on imported natural enemies

- Exploit existing natural genetic variation to improve efficiency
 - Selection of strains from nature
 - Selective breeding

Traits to target

- System specific
 - Crop, pest, natural enemy
- Life-history traits
 - Reproductive potential
 - Environmental sensitivity
- Modelling studies

BINGO-ITN

- Innovative Training Network for Early Stage Researchers
- Advance current knowledge on the use of natural genetic variation in biocontrol practice
- Enhance the application of (quantitative) genetic methods to invertebrate biocontrol
- Train young researchers in an extensive suite of interdisciplinary skills

Genetic improvement

Entomologia Experimentalis et Applicata

February 2017

DOI: 10.1111/eea.12510

SPECIAL ISSUE - IMPROVING PEST CONTROL: MASS REARING AND FIELD PERFORMANCE

It is time to bridge the gap between exploring and exploiting: prospects for utilizing intraspecific genetic variation to optimize arthropods for augmentative pest control — a review

Interdisciplinary by nature

BINGO - participants

BINGO - participants

24 researchers

13 PhD students (ESRs)

WP4 – Rearing and storage

Kostas Bourtzis FAO

- Formulate general principles for mass rearing and storage of biocontrol agents
- Explore alternative mass rearing approaches that maintain desirable trait phenotypes

RP no	Project title	ESR	Host
RP2	Fecundity & scales in <i>Ephestia</i>	Sander Visser	ВС
RP4	Clutch size, sex ratio, and differential mortality in the <i>Bracon hebetor / B. brevicornis</i> species complex	Simone Ariens	UB
RP8	Optimization of mass rearing of <i>Bactrocera oleae</i> and its parasitoids	Erica Ras	FAO

WP5 – Monitoring and Risk assessment

Tim Haye CABI

- Quantify the risk of non-target effects of inundatively released egg parasitoids
- Monitor persistence of released biocontrol agents and potential risks of replacements of con-generic or non-related species

RP no	Project title	ESR	Host
RP6	Benefits and risks of using the native polyphagous biological control agent, <i>Anastatus bifasciatus</i> , against invasive stink bug <i>Halyomorpha halys</i>	Judith Stahl	CABI
RP12	Monitoring pre- and post-release diversity in local parasitoid populations	Sophie Chattington	UB

WP6 – Performance

Tom Groot Koppert

- Generate a mathematical modeling framework for predicting key biocontrol agent performance traits
- Artificial selection on predicted performance traits in three biocontrol agents,
- Test success of using artificial selection to increase performance

RP no	Project title	ESR	Host
RP3	Promoting adaptability of <i>Amblyseius swirskii</i> predatory mites to tomato crop	Angeliki Paspati	IVIA
RP7	Improving pest control efficiency: a modelling approach	Wouter Plouvier	INRA
RP10	Minimizing plant damage through selected <i>Nesidiocoris</i> tenuis	Milena Chinchilla Ramírez	IVIA
RP11	Expanding the range of uses of <i>Phytoseiulus persimilis</i> predatory mites	Sophie le Hesran	KBV

WP7 – Natural genetic variation genomes & application

Bas Zwaan WU

- Develop genome-wide genetic markers for field monitoring, for estimating and tracking variation mass-reared biocontrol agent strains
- Unravel the genes that underlying phenotypic variation in relevant biocontrol agent traits
- Develop genomic selection methods for improvement of biocontrol agents

RP no	Project title	ESR	Host
RP1	Population genomics of natural enemies	Kim Ferguson	WU
RP5	Genomic basis of life history traits and reproductive potential	Kelley Leung	RUG
RP9	The genetic basis of diapause in natural <i>Drosophila</i> melanogaster populations	Manolis Lirakis	VV
RP13	Genome-based selection for the improvement of natural enemies in biocontrol	Shuwen Xia	WU

BINGO –Training & Dissemination

- BINGO Summer Schools:
 - Research skills, Professional skills & Careers

- BINGO Workshops:
 - Genomics & evolution in invertebrates (2018)
 - Integrating genetics & biocontrol: from lab to market (2018)
- Outreach:
 - Professionals
 - Public
 - High school students

Andra Thiel
UB

Leo Beukeboom RUG

More information?

Visit BINGO website:

- http://www.bingo-itn.eu/
- Sign up for BINGO newsletter

Margreet Bruins

Contact BINGO: info@bingo-itn.eu

This project has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641456

