

Practical Challenges to Inundative and Inoculative Biocontrol

Delemont, 17-01-2017

In order of appearance:

Tom Groot: production

Markus Knapp: protected crops

Bernd Wührer: open fields

Cost efficiency

Why: biocontrol agents are considered expensive!

they are: -competition = chemical

-now mostly in high value crops

they are not: -good ROI

-other non-financial benefits

Cheaper is better, for producer and grower.

Cost efficiency

Overall trend: changing systems

From classical tritrophic systems

To factitious hosts

Cost efficiency

Overall trend: changing systems

To artificial diets

Reliability

Why: always be able to deliver required numbers

- late application misses the opportunity for balanced population
- chemical correction interferes with other biological systems
- no shelf life buffering
- long lead time

Reliability

Overall trend: from greenhouse to climate chamber

- climate in the greenhouse is unpredictable

climate chambers are less prone to contamination/ easier

to disinfect

For the future:
Growing plants inside with LED?

Brightbox

Quality

Why: only good quality natural enemies deliver the right service!

Challenges: -costs

-scaling

-raw materials: residue and GMO

Quality

Challenges: logistics!

-how to control climate?

-if it is in out of your hands?

-different products combined?

-speed is everything...

Quality

Quality checks

- -QC leaving the factory
- -Data loggers in transport
- -Quick check at growers

 IOBC Quality Control Guidelines

 Van Lenteren et al 2003

http://users.ugent.be/~padclerc/AMRQC/guidelines.htm

Not easy: lot of R&D

protection: secrecy

protection: patents. Not different from any other developing industry!

14th IOBC-MRQA Workshop

Mass Rearing High Quality Invertebrates for Multiple Purposes

Mérida, Mexico

November 14 - 17, 2017

http://users.ugent.be/~padclerc/AMRQC/announcements.htm

Multiple pests

Multiple control strategies

Changing production methods

Multiple diseases

Cost efficiency

End user demands

Roses

- Pests:
 - Thrips
 - Whiteflies
 - Spider mites
 - Aphids
 - Caterpillars
 - Mealybugs, scales

- Diseases:
 - Mildew
 - Botrytis

Thrips control with predatory mites

Tolerance is very low

- Mildew control: sulfur burners or frequent application of fungicides
- Use of insecticides and surfactants
- Difficult to establish a predator population

Side effects		ACTARA 25 WG × thiamethoxam		COLLIS × CONSERVE × SPINTOR spinosad		OR	MELTATOX × dodemorph	SILWET GOLD × heptamethyltrisiloxane
		SP	DR	SP	SP	DR		
Amblyseius swirskii SWIRSKI-MITE	population		1					
	adult	2		0	4	1		
	egg			0	4			
	persistence	1 w	0 w	0 w		0 w		

Natural enemies							
1	= harmless or only slightly harmful < 25% reduction						
2	= moderately harmful 25 - 50% reduction						
3	= harmful 50 - 75% reduction						
4	= very harmful > 75% reduction						
	= effect/persistence unknown						

- Frequent applications?
- Interactions between compounds?
- Influence of spraying technology?
- Different growing conditions

Strategies

- Frequent releases of high numbers
- Slow release sachets

- Pollen
- Prey mites
 - On plants
 - In litter
- Ephestia, Artemia...

?v=04Za8CQnVGA

Supplementary feeding

• On plants (Pijnakker et al. 2016)

• In litter (Munoz-Cardenas et al. 2017)

 Predation by generalist predatory mites on A. aphidimyza disrupts biological control of aphids (Messelink et al. 2012)

Fig. 5. Densities of aphids and eggs and larvae of the predatory midge *A. aphidimyza* on plants with or without the predatory mite *A. swirskii*. Shown are the average densities (±s.e.m.) 7 days after the first releases of midge adults. The *p*-values refer to the significance of differences between treatments per organism, based on Fisher's LSD test.

Without *Amblyseius swirskii*

With Amblyseius swirskii

Price: *N. cucumeris < A. swirskii < A. limonicus*

	A. swir	skii	A. limonicus		
Ratio	#/plant	day	#/plant	day	
5:1	50	0	10	2	
5:2.5	50	0	25	2	
5:10	50	0	100	2	

Price: *N. cucumeris < A. swirskii < A. limonicus*

Combined releases of M.
 pygmaeus and O. laevigatus
 control thrips and aphids better
 than each of them separately
 (Messelink & Janssen 2014)

 Whitefly control with A. swirskii better if also thrips present (Messelink et al. 2008)

Knowledge intensive!

- Knowledgeable growers and advisors
- High R&D input

16th Meeting of the IOBC/WPRS working Group "Integrated Control in Protected crops Temperate Climate"

Niagara Falls, Canada June 4 - 8, 2017

http://iobccanada2017.ca/

Classical biological control (inoculative)

Classical biological control (inoculative)

 "Commercial" biological control (inundative / mass releases of beneficials)

Classical biological control (inoculative)

- "Commercial" biological control (inundative / mass releases of beneficials)
 - Trichogramma sp.
 - Nematodes

Classical biological control (inoculative)

- "Commercial" biological control (inundative / mass releases of beneficials)
 - Trichogramma sp.
 - Nematodes
 - others?

Why *Trichogramma* against corn borer?

Why *Trichogramma* against corn borer?

 "new pest" that caused heavy damage in production of corn seeds in the early '70s

Why *Trichogramma* against corn borer?

- "new pest" that caused heavy damage in production of corn seeds in the early '70s
- Synthetic pyrethroids were used to control this pest, but caused health problems of workers
- Efficacy of Bacillus thuringiensis was too low

Why *Trichogramma* against corn borer?

- "new pest" that caused heavy damage in production of corn seeds in the early '70s
- Synthetic pyrethroids were used to control this pest, but caused health problems of workers
- Efficacy of Bacillus thuringiensis was too low "only, cause there is no other solution ..."

Why Trichogramma?

 Trichogramma was known to be effective to control pest insects (first trials 1900 in USA)

Why Trichogramma?

- Trichogramma was known to be effective to control pest insects (first trials 1900 in USA)
- Trichogramma was available: use of "strain Moldavia"; declared as T. evanescens, determined later as T. brassicae

Why Trichogramma?

- Trichogramma was known to be effective to control pest insects (first trials 1900 in USA)
- Trichogramma was available: use of "strain Moldavia"; declared as T. evanescens, determined later as T. brassicae

Why *Trichogramma*?

 Easy to multiply (egg parasitoid, polyphagous, short life cycle, nice and tiny ...)

Why Trichogramma?

 Easy to multiply (egg parasitoid, polyphagous, short life cycle, nice and tiny ...)

but

- Big quantities needed in a short period of time
- Exact timing of releases monitoring of ECB close cooperation of producers, distributers, users with plant protection services)

Monitoring

Why Trichogramma?

 Easy to multiply (egg parasitoid, polyphagous, short life cycle, nice and tiny ...)

but

- Big quantities needed in a short period of time
- Exact timing of releases monitoring of ECB
- Storage and shipment are difficult
- Releasing methods required

Releasing by hand

Releasing by machines

Releasing by machines

"problems, due to little knowledge"

Taxonomy – misidentification ...

- Taxonomy misidentification ...
- Elevation of natural occuring beneficials

- Taxonomy misidentification ...
- Elevation of natural occuring beneficials
- Impact on natural environment (nature conservation, national permissions)

Impact on natural environment

D. Babendreier et al. | Biological Control 26 (2003) 139-145

Fig. 2. Parasitism of *Ephestia kuehniella* and non-target eggs inside of maize and inside of a meadow at 2 and 20 m distance from the edge of a maize field where *Trichogramma brassicae* had been released. Number of eggs or egg masses recovered, ranged from 19 to 28 for each species and the n = 4 replicates, respectively.

- Taxonomy misidentification ...
- Elevation of natural occuring beneficials
- Impact on natural environment (nature conservation, national permissions)
- Acting in the framework of regulations (collection of species/strains, release of benficials) which might change ...

Regulation - Collection

- Access and Benefit Sharing (based on CBD)
- Nagoya Protocol
- EU Regulation 511/2014
- National Regulation

Regulation - Release

- Nature Conservation Act
- Plant Protection Act

- Taxonomy misidentification ...
- Elevation of natural occurring beneficials
- Impact on natural environment (nature conservation, national permissions)
- Acting (collection of species/strains, release of benficials) in the framework of regulations (which might change ...)

"problems, due to little knowledge"

- Taxonomy misidentification ...
- Elevation of natural occuring beneficials
- Impact on natural environment (nature conservation, national permissions)
- Acting (collection of species/strains, release of benficials) in the framework of regulations (which might change ...)

"Now we know more, but still not enough ..."

Finally:

High efficacy is needed

for an acceptable price

Trichogramma is used to control the corn borer since more than 30 years in Europe – today on more then 200.000ha

From the idea to the product:

- Identification of pest
- Search and identification of antagonists
- Selection of species/strains
- Development of rearing system
- Development of releasing units
- Creation of a product
- And allways keep the quality in mind!

Summary and outlook:

- The potential market is very big
- But only very few beneficials are used
- Due to a lot of scientific work that is needed to develop a product
- But we have BINGO!

